Calculus - Lecture 10
Higher order derivatives. Optimization.
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Second order partial derivatives

Let f: A C R" — R™ be a partially differentiable function with respect to
every variable z;, j = 1,n on A.

The function f is two times partially differentiable at a with respect to every

variable if all partial derivatives % are partially differentiable at a € A with

) J
respect to every variable xy.

Notation for the second order partial derivative of f:

9 (9fi P
ail'k (&rj) (a) o ((’)‘Lkatlj (0)
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Second order Fréchet derivative

The function f is two times differentiable at the point a € A if the partial
ofi

8a:j

derivatives are differentiable at a.

The second order Fréchet derivative of f at the point a is the function
d’f :R" x R" — R™ given by the formula

d%(@@):i(ii 0 fi (a)u-vk)e-
“ ; ; 0z ;0xy, ’ ’

where u,v € R", ¢; = (0, ...,0,1,0, ...

The second order Fréchet derivative of f at a satisfies

o asad (0) = duf(0) = 27 @) 0)]

u=0 il

=0 ,VveR".
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Second order derivatives for two variable functions

Assume that f : R? — R.

Second order partial derivatives:

o of Pf
02 for = (fa)e = o <6m> dzdy
OPf of 32f _ of

6y8$ fxy (fac) 63/ (637) fyy (fy)y - Y <8y>

Second order Fréchet derivative at a = (a1, as) € R?:
the function d2 f : R? x R? — R given by

0
= fyx = (fy)a: = %
0
Ay

dﬁf(u)(v) = fuz(a1, a2)u1vi+ foy (a1, a2)urve+ fyz (a1, az)ugvr + fyy (a1, ag)ugvs

for any u = (u,ua), v = (vi,ve) € R2.
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Higher order derivatives Second order derivatives

Example
Consider the function f(z,y) = xe®.
The first order partial derivatives are:
2

fo =€ + xye™? and fy = ae™.

The second order partial derivatives are:

foz = (fo)o = 29y€™ + 2y®e™  foy = (fo)y = 2ze™ + 2°ye™

fye = (fy)z = 22" + z*ye™ fyy = (fy)y = zde

The Second order Fréchet derivative at the point a = (1, 0) is the function
) ) f : R* x R* — R given by:

A}y 0)f (W)(0) = fua(1,0)urv1 + fay(1,0)urvs + fya(1,0)ugvy + fyy (1, 0)ugvs
= 2(U1U2 + Ug'l}l) + U2

for any u = (uy,ua), v = (vi,v2) € R2.
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Important theorems

Theorem (Mixed derivative theorem of Schwarz)
If the function f is twice differentiable at a, then

> fi 9 fi
a) = a
8xj8xk axkaxj

Theorem (Criterion for second order differentiability)
0 fi
8xj8xk
and they are continuous at a, then f is two times differentiable at a.

If the second order partial derivatives

exist in a neighborhood of a
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Higher order partial derivatives

The function f : A ¢ R™ — R™ is k-times partially differentiable at a € A with
respect to every variable if
@ fis (k — 1)-times partially differentiable with respect to every variable on
an open neighborhood of a
S
. . . ) Ly " ale
differentiable with respect to every variable z;, at a.

@ every (k — 1)-th order partial derivative is partially

The k-th order partial derivative of f ata is

Ul et S 1

8a:jk8xjk71 ~-8le 6‘zjk al’jk71 ~-8le
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Higher order differentiability

The function f : A ¢ R™ — R™ is k-times differentiable at « if the partial
derivatives of order (k — 1) are differentiable at a.

The Fréchet derivative of order k of f at a is the function
dFf:R" x --- x R® — R™ given by

=1 \Jj1=1j2=1 Jr=1

dl;f(ul)(UQ) T (uk> = Z (Z Z Z axj a) ’ ujllu?Z '“u?k) €i

The Fréchet derivative of order k of f at a satisfies:

i I f(ut) (W) - (1) —dg ™ () (?) - (") — dg f(uh) (W?) - (u”)]

l[u¥]|—0 [l
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Important results

Theorem (Mixed derivative theorem)
If the function is k-times differentiable at a, then the following relations hold:

8kfi (a _ akfz
8xj18xj2 8x]k o Ox

(@

o(71)0%a(ja) * ** OTo(5)

Theorem (Criterion for k-times differentiability)

If the partial derivatives of k-th order of the function f exist in a neighborhood
of a and they are continuous at a, then f is k-times differentiable at a.
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Local minimum and maximum values
Minimum and maximum values

The point a € A is a local minimum point of the function f : A C R™ — R! if
there exists a neighborhood V' C A of a such that f(a) < f(z) forany z € V.

The point a € A is a global minimum point of the function f : A ¢ R® — R! if
f(a) < f(x) forany z € A.

The point a € A is a local maximum point of the function f : A ¢ R® — R! if
there exists a neighborhood V' C A of a such that f(a) > f(z) forany z € V.

The point a € A is a global maximum point of the function f : A ¢ R® — R! if
f(a) > f(z) forany z € A.
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Local minimum and maximum values
Minimum and maximum values

absolute
maximum

local

absolute C
minimum

minimum
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Local minimum and maximum values
Conditions for local extreme values

Necessary condition for local extrema:
If the function f : A ¢ R*® — R! attains a local minimum or maximum value at
the point a € A and all partial derivatives of f exist at a, then

Vf(a) =0,
i.e. ais a critical point (stationary point) of f.

Sulfficient condition for local extrema:
Assume that f : A ¢ R™ — R! has continuous second order partial
derivatives on A and « is a critical point of f.

0 f
8:@6@3

) If d2f(h)(h) > 0for h € R™ and det (

(a)) # 0, then a is a local
minimum point of f;

0% f
5‘:51-8%-

i) If d2f(h)(h) <0for h € R™ and det (

(a)) # 0, then a is a local
maximum point of f.
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Local minimum and maximum values
Second derivative test for two variable functions

Assume that a = (a1, as) € A is a critical point of the function f : A ¢ R? — R.
Consider the Hessian matrix:

O anan) 2L, 00)
= f— 02 ay, az 020 ay, az
(a1,a2)) — a2f 82

f
D507 (a1,as2) e a5 (a1, a2)

Consider the principal minors of the Hessian matrix:

% f

Ar =55

ay,as) and Ay = det (H(al,az)f)

e if Ay > 0and A; > 0then a = (a1, a2) is a local minimum point of f;
e if Ay <0and Ay > 0then a = (a1, a2) is a local maximum point of f;
e if Ay < 0then a = (a1,a2) is a saddle point of f;

e if Ay = 0 then this test is inconclusive.
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Examples

Example 1.
fz,y) = 2® +y* — 22 — 6y + 14
Partial derivatives: z
fa=20-2  f,=2y—6

= critical point: (1, 3).

Hessian Matrix at (1, 3):
_( fea(1,3) fay(1,3) \_ (2 0
Hunf=( 109 1203 )=(0 %) P

As A1 =2 > 0and A, = 4 > 0 we deduce
that (1, 3) is @ minimum point of the f.

Minimum value: f(1,3) =4
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Examples

Example 2.

fla,y) =y° —a*

Partial derivatives:
fz=—2x fy =2y

= critical point: (0,0).

Hessian Matrix at (0,0):

f22(0,0) fwy(gvg) >:<

H(0,0)f:< fyx(070) fyy( 3 )

Local minimum and maximum values

-2 0

0 2)

Ay =—-4<0 = (0,0) is a saddle point.
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Examples
Example 3.

flzy) =2 +y" —day +1
Partial derivatives:
fo=42° 4y f, =4y —da

= critical points: (0,0), (1,1), (—1,—1).
Hessian Matrix:

fre  [fo B 1222 -4
H(z,y)f:< fym fyz >_( -4 12y2 )

= A; =12z2 and A, = 14422y — 16

X

@ (0,0) is a saddle point (A = —16 < 0)
@ (1,1)and (—1,—1) are local minimum points
(A; =12 >0and Ay, =128 > 0)
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Lagrange multipliers and constrained optimization

Consider a function f : A ¢ R™ — R, where A is an open set and the set
I' C A, defined by:

F={zcA: g(x)=0i=1,p} whereg;: A—Rlandp<n
The equations g;(x) = 0 are called constraints.
If the restriction of the function f to the set T, i.e. f|r, has an extreme point
a € T, then this is called conditional extreme point.
Method of Lagrange Multipliers:

Assume that f and g;, i = 1, p are continuously differentiable near the
conditional extreme point a € T and the gradient vectors Vg;(a), i = 1,p are
linearly independent vectors of R™.

Then there exist some constants Ay, Az, ..., A, such that
p
Vf(a) = A\iVgi(a)
=1
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Special case: two variables and one constraint

If we want to maximize (minimize) the function f : A ¢ R?> — R! subject to the
constraint g(x, y) = 0, we first need to solve the system of three equations

g(}my) =0
7( y) = ﬁ

gy 3

By ( y) = ')

with respect to the variables xz, y, A. The points (z,y) that we find are the only
possible locations of the extreme values of f subject to the constraint

g(x,y) = 0.

EVA KASLIK Calculus - Lecture 10 18/22



Example

Find the extreme values of f(x,y) = 2% + 232 on the circle 22 + y? = 1.

X4+2y*=2

=
s

xX2+2y*=1




Example

Find the extreme values of f(x,y) = 22 + 232 on the circle 22 + y? = 1.
constraint: g(z,y) = 22 +4*> — 1= 0.

We have to solve the system:

g(z,y) =0 4yt =1
fo = Aga = 2r =\ 2z
fy:/\gy dy =X-2y

@ ifx =0, theny = +1;
@ if A\=1,theny =0and z = +£1.
— possible extreme points: (1,0), (—1,0), (0,1) and (0,—1).

Evaluating f at each of these points gives the minimum and maximum value
of the function on the circle 22 4 y? = 1:

JFELO) =1, and f(0,£1)= 2

min max
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Optimization Constrained optimization

Special case: three variables and two constraints

If we want to maximize (minimize) the function f : A ¢ R® — R subject to
constraints g(x,y, z) = 0 and h(z,y, z) = 0, we first need to solve the system

of five equations

g(x,y,2) =0
h(x,y,2z) =0

0 0 oh
l(ajayaz) = Al%(xayaz) + )‘27(z7yaz)

7(3;73/"2) = Alﬁ(xayaz) +/\27(J},y,2)

o g
o2 (ZL',y,Z) - Alaz(‘r»yvz) + )\2 9z (x,y,z)

with respect to the variables z, y, z, A1, A2. The points (z, y, z) that we find are
the only possible locations of the extreme values of f subject to the two

constraints.
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Special case: three variables and two constraints

V f is in the plane determined by Vg and V f:

Exercise. Find the maximum possible area of a right triangle of fixed
perimeter P.
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