## Calculus - Lecture 10

Higher order derivatives. Optimization.

## EVA KASLIK

## Second order partial derivatives

Let $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a partially differentiable function with respect to every variable $x_{j}, j=\overline{1, n}$ on $A$.

The function $f$ is two times partially differentiable at $a$ with respect to every variable if all partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are partially differentiable at $a \in A$ with respect to every variable $x_{k}$.

Notation for the second order partial derivative of $f$ :

$$
\frac{\partial}{\partial x_{k}}\left(\frac{\partial f_{i}}{\partial x_{j}}\right)(a)=\frac{\partial^{2} f_{i}}{\partial x_{k} \partial x_{j}}(a)
$$

## Second order Fréchet derivative

The function $f$ is two times differentiable at the point $a \in A$ if the partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are differentiable at $a$.

The second order Fréchet derivative of $f$ at the point $a$ is the function $d_{a}^{2} f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by the formula

$$
d_{a}^{2} f(u)(v)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(a) u_{j} v_{k}\right) e_{i}
$$

where $u, v \in \mathbb{R}^{n}, e_{i}=(0, \ldots, 0,1,0, \ldots, 0), i=\overline{1, n}$.
The second order Fréchet derivative of $f$ at $a$ satisfies

$$
\lim _{u \rightarrow 0} \frac{\left\|d_{a+u} f(v)-d_{a} f(v)-d_{a}^{2} f(u)(v)\right\|}{\|u\|}=0 \quad, \forall v \in \mathbb{R}^{n}
$$

## Second order derivatives for two variable functions

Assume that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$.
Second order partial derivatives:

$$
\begin{array}{ll}
\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}=\left(f_{x}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) & \frac{\partial^{2} f}{\partial x \partial y}=f_{y x}=\left(f_{y}\right)_{x}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right) \\
\frac{\partial^{2} f}{\partial y \partial x}=f_{x y}=\left(f_{x}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) & \frac{\partial^{2} f}{\partial y^{2}}=f_{y y}=\left(f_{y}\right)_{y}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)
\end{array}
$$

Second order Fréchet derivative at $a=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$ :
the function $d_{a}^{2} f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by
$d_{a}^{2} f(u)(v)=f_{x x}\left(a_{1}, a_{2}\right) u_{1} v_{1}+f_{x y}\left(a_{1}, a_{2}\right) u_{1} v_{2}+f_{y x}\left(a_{1}, a_{2}\right) u_{2} v_{1}+f_{y y}\left(a_{1}, a_{2}\right) u_{2} v_{2}$ for any $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$.

## Example

Consider the function $f(x, y)=x e^{x y}$.
The first order partial derivatives are:

$$
f_{x}=e^{x y}+x y e^{x y} \quad \text { and } \quad f_{y}=x^{2} e^{x y} .
$$

The second order partial derivatives are:

$$
\begin{array}{ll}
f_{x x}=\left(f_{x}\right)_{x}=2 y e^{x y}+x y^{2} e^{x y} & f_{x y}=\left(f_{x}\right)_{y}=2 x e^{x y}+x^{2} y e^{x y} \\
f_{y x}=\left(f_{y}\right)_{x}=2 x e^{x y}+x^{2} y e^{x y} & f_{y y}=\left(f_{y}\right)_{y}=x^{3} e^{x y}
\end{array}
$$

The Second order Fréchet derivative at the point $a=(1,0)$ is the function $d_{(1,0)}^{2} f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by:

$$
\begin{aligned}
d_{(1,0)}^{2} f(u)(v) & =f_{x x}(1,0) u_{1} v_{1}+f_{x y}(1,0) u_{1} v_{2}+f_{y x}(1,0) u_{2} v_{1}+f_{y y}(1,0) u_{2} v_{2} \\
& =2\left(u_{1} v_{2}+u_{2} v_{1}\right)+u_{2} v_{2}
\end{aligned}
$$

for any $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$.

## Important theorems

Theorem (Mixed derivative theorem of Schwarz)
If the function $f$ is twice differentiable at $a$, then

$$
\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}(a)=\frac{\partial^{2} f_{i}}{\partial x_{k} \partial x_{j}}(a) \quad, \forall i=\overline{1, m}, j, k=\overline{1, n} .
$$

Theorem (Criterion for second order differentiability)
If the second order partial derivatives $\frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{k}}$ exist in a neighborhood of $a$ and they are continuous at $a$, then $f$ is two times differentiable at $a$.

## Higher order partial derivatives

The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is $k$-times partially differentiable at $a \in A$ with respect to every variable if

- $f$ is $(k-1)$-times partially differentiable with respect to every variable on an open neighborhood of $a$
- every $(k-1)$-th order partial derivative $\frac{\partial^{k-1} f_{i}}{\partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}$ is partially differentiable with respect to every variable $x_{j_{k}}$ at $a$.

The $k$-th order partial derivative of $f$ at $a$ is

$$
\frac{\partial^{k} f_{i}}{\partial x_{j_{k}} \partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}(a)=\frac{\partial}{\partial x_{j_{k}}}\left(\frac{\partial^{k-1} f_{i}}{\partial x_{j_{k-1}} \cdots \partial x_{j_{1}}}\right)(a)
$$

## Higher order differentiability

The function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is $k$-times differentiable at $a$ if the partial derivatives of order $(k-1)$ are differentiable at $a$.

The Fréchet derivative of order $k$ of $f$ at $a$ is the function $d_{a}^{k} f: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by
$d_{a}^{k} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k}\right)=\sum_{i=1}^{m}\left(\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{k}=1}^{n} \frac{\partial^{k} f_{i}}{\partial x_{j_{k}} \cdots \partial x_{j_{1}}}(a) \cdot u_{j_{1}}^{1} u_{j_{2}}^{2} \cdots u_{j_{k}}^{k}\right) e_{i}$
The Fréchet derivative of order $k$ of $f$ at $a$ satisfies:
$\lim _{\left\|u^{k}\right\| \rightarrow 0} \frac{\left\|d_{a+u^{k}}^{k-1} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k-1}\right)-d_{a}^{k-1} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k-1}\right)-d_{a}^{k} f\left(u^{1}\right)\left(u^{2}\right) \cdots\left(u^{k}\right)\right\|}{\left\|u^{k}\right\|}=0$

## Important results

Theorem (Mixed derivative theorem)
If the function is $k$-times differentiable at $a$, then the following relations hold:

$$
\frac{\partial^{k} f_{i}}{\partial x_{j_{1}} \partial x_{j_{2}} \cdots \partial x_{j_{k}}}(a)=\frac{\partial^{k} f_{i}}{\partial x_{\sigma\left(j_{1}\right)} \partial x_{\sigma\left(j_{2}\right)} \cdots \partial x_{\sigma\left(j_{k}\right)}}(a)
$$

Theorem (Criterion for $k$-times differentiability)
If the partial derivatives of $k$-th order of the function $f$ exist in a neighborhood of $a$ and they are continuous at $a$, then $f$ is $k$-times differentiable at $a$.

## Minimum and maximum values

The point $a \in A$ is a local minimum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ if there exists a neighborhood $V \subset A$ of $a$ such that $f(a) \leq f(x)$ for any $x \in V$.

The point $a \in A$ is a global minimum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ if $f(a) \leq f(x)$ for any $x \in A$.

The point $a \in A$ is a local maximum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ if there exists a neighborhood $V \subset A$ of $a$ such that $f(a) \geq f(x)$ for any $x \in V$.

The point $a \in A$ is a global maximum point of the function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ if $f(a) \geq f(x)$ for any $x \in A$.

## Minimum and maximum values



## Conditions for local extreme values

Necessary condition for local extrema:
If the function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ attains a local minimum or maximum value at the point $a \in A$ and all partial derivatives of $f$ exist at $a$, then

$$
\nabla f(a)=0,
$$

i.e. $a$ is a critical point (stationary point) of $f$.

Sufficient condition for local extrema: Assume that $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$ has continuous second order partial derivatives on $A$ and $a$ is a critical point of $f$.
i) If $d_{a}^{2} f(h)(h) \geq 0$ for $h \in \mathbb{R}^{n}$ and $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right) \neq 0$, then $a$ is a local minimum point of $f$;
ii) If $d_{a}^{2} f(h)(h) \leq 0$ for $h \in \mathbb{R}^{n}$ and $\operatorname{det}\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)\right) \neq 0$, then $a$ is a local maximum point of $f$.

## Second derivative test for two variable functions

Assume that $a=\left(a_{1}, a_{2}\right) \in A$ is a critical point of the function $f: A \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$. Consider the Hessian matrix:

$$
H_{\left(a_{1}, a_{2}\right)} f=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}}\left(a_{1}, a_{2}\right) & \frac{\partial^{2} f}{\partial x \partial y}\left(a_{1}, a_{2}\right) \\
\frac{\partial^{2} f}{\partial y \partial x}\left(a_{1}, a_{2}\right) & \frac{\partial^{2} f}{\partial y^{2}}\left(a_{1}, a_{2}\right)
\end{array}\right)
$$

Consider the principal minors of the Hessian matrix:

$$
\Delta_{1}=\frac{\partial^{2} f}{\partial x^{2}}\left(a_{1}, a_{2}\right) \quad \text { and } \quad \Delta_{2}=\operatorname{det}\left(H_{\left(a_{1}, a_{2}\right)} f\right)
$$

- if $\Delta_{1}>0$ and $\Delta_{2}>0$ then $a=\left(a_{1}, a_{2}\right)$ is a local minimum point of $f$;
- if $\Delta_{1}<0$ and $\Delta_{2}>0$ then $a=\left(a_{1}, a_{2}\right)$ is a local maximum point of $f$;
- if $\Delta_{2}<0$ then $a=\left(a_{1}, a_{2}\right)$ is a saddle point of $f$;
- if $\Delta_{2}=0$ then this test is inconclusive.


## Examples

## Example 1.

$$
f(x, y)=x^{2}+y^{2}-2 x-6 y+14
$$

Partial derivatives:

$$
f_{x}=2 x-2 \quad f_{y}=2 y-6
$$

$\Longrightarrow$ critical point: $(1,3)$.
Hessian Matrix at $(1,3)$ :


As $\Delta_{1}=2>0$ and $\Delta_{2}=4>0$ we deduce that $(1,3)$ is a minimum point of the $f$.

Minimum value: $f(1,3)=4$

## Examples

## Example 2.

$$
f(x, y)=y^{2}-x^{2}
$$

Partial derivatives:

$$
f_{x}=-2 x \quad f_{y}=2 y
$$

$\Longrightarrow$ critical point: $(0,0)$.
Hessian Matrix at $(0,0)$ :
$H_{(0,0)} f=\left(\begin{array}{cc}f_{x x}(0,0) & f_{x y}(0,0) \\ f_{y x}(0,0) & f_{y y}(0,0)\end{array}\right)=\left(\begin{array}{cc}-2 & 0 \\ 0 & 2\end{array}\right)$
$\Delta_{2}=-4<0 \Longrightarrow(0,0)$ is a saddle point.

## Examples

## Example 3.

$$
f(x, y)=x^{4}+y^{4}-4 x y+1
$$

Partial derivatives:

$$
f_{x}=4 x^{3}-4 y \quad f_{y}=4 y^{3}-4 x
$$

$\Longrightarrow$ critical points: $(0,0),(1,1),(-1,-1)$.
Hessian Matrix:

$$
\begin{aligned}
& H_{(x, y)} f=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
12 x^{2} & -4 \\
-4 & 12 y^{2}
\end{array}\right) \\
& \Longrightarrow \Delta_{1}=12 x^{2} \text { and } \Delta_{2}=144 x^{2} y^{2}-16
\end{aligned}
$$

- $(0,0)$ is a saddle point $\left(\Delta_{2}=-16<0\right)$
- $(1,1)$ and $(-1,-1)$ are local minimum points

$$
\left(\Delta_{1}=12>0 \text { and } \Delta_{2}=128>0\right)
$$

## Lagrange multipliers and constrained optimization

Consider a function $f: A \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{1}$, where $A$ is an open set and the set $\Gamma \subset A$, defined by:

$$
\Gamma=\left\{x \in A: g_{i}(x)=0, i=\overline{1, p}\right\} \quad \text { where } g_{i}: A \rightarrow \mathbb{R}^{1} \text { and } p<n
$$

The equations $g_{i}(x)=0$ are called constraints.
If the restriction of the function $f$ to the set $\Gamma$, i.e. $\left.f\right|_{\Gamma}$, has an extreme point $a \in \Gamma$, then this is called conditional extreme point.

Method of Lagrange Multipliers:
Assume that $f$ and $g_{i}, i=\overline{1, p}$ are continuously differentiable near the conditional extreme point $a \in \Gamma$ and the gradient vectors $\nabla g_{i}(a), i=\overline{1, p}$ are linearly independent vectors of $\mathbb{R}^{n}$.

Then there exist some constants $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$ such that

$$
\nabla f(a)=\sum_{i=1}^{p} \lambda_{i} \nabla g_{i}(a)
$$

## Special case: two variables and one constraint

If we want to maximize (minimize) the function $f: A \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{1}$ subject to the constraint $g(x, y)=0$, we first need to solve the system of three equations

$$
\left\{\begin{array}{l}
g(x, y)=0 \\
\frac{\partial f}{\partial x}(x, y)=\lambda \frac{\partial g}{\partial x}(x, y) \\
\frac{\partial f}{\partial y}(x, y)=\lambda \frac{\partial g}{\partial y}(x, y)
\end{array}\right.
$$

with respect to the variables $x, y, \lambda$. The points $(x, y)$ that we find are the only possible locations of the extreme values of $f$ subject to the constraint $g(x, y)=0$.

## Example

Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$.



## Example

Find the extreme values of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$. constraint: $g(x, y)=x^{2}+y^{2}-1=0$.
We have to solve the system:

$$
\left\{\begin{array} { l } 
{ g ( x , y ) = 0 } \\
{ f _ { x } = \lambda g _ { x } } \\
{ f _ { y } = \lambda g _ { y } }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
x^{2}+y^{2}=1 \\
2 x=\lambda \cdot 2 x \\
4 y=\lambda \cdot 2 y
\end{array}\right.\right.
$$

- if $x=0$, then $y= \pm 1$;
- if $\lambda=1$, then $y=0$ and $x= \pm 1$.
$\Longrightarrow$ possible extreme points: $(1,0),(-1,0),(0,1)$ and $(0,-1)$.
Evaluating $f$ at each of these points gives the minimum and maximum value of the function on the circle $x^{2}+y^{2}=1$ :

$$
f( \pm 1,0)=\underbrace{1}_{\min } \text { and } f(0, \pm 1)=\underbrace{2}_{\max }
$$

## Special case: three variables and two constraints

If we want to maximize (minimize) the function $f: A \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{1}$ subject to constraints $g(x, y, z)=0$ and $h(x, y, z)=0$, we first need to solve the system of five equations

$$
\left\{\begin{array}{l}
g(x, y, z)=0 \\
h(x, y, z)=0 \\
\frac{\partial f}{\partial x}(x, y, z)=\lambda_{1} \frac{\partial g}{\partial x}(x, y, z)+\lambda_{2} \frac{\partial h}{\partial x}(x, y, z) \\
\frac{\partial f}{\partial y}(x, y, z)=\lambda_{1} \frac{\partial g}{\partial y}(x, y, z)+\lambda_{2} \frac{\partial h}{\partial y}(x, y, z) \\
\frac{\partial f}{\partial z}(x, y, z)=\lambda_{1} \frac{\partial g}{\partial z}(x, y, z)+\lambda_{2} \frac{\partial h}{\partial z}(x, y, z)
\end{array}\right.
$$

with respect to the variables $x, y, z, \lambda_{1}, \lambda_{2}$. The points $(x, y, z)$ that we find are the only possible locations of the extreme values of $f$ subject to the two constraints.

## Special case: three variables and two constraints

$\nabla f$ is in the plane determined by $\nabla g$ and $\nabla f$ :


Exercise. Find the maximum possible area of a right triangle of fixed perimeter $P$.

