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Higher order derivatives Second order derivatives

Second order partial derivatives

Let f : A ⊂ Rn → Rm be a partially differentiable function with respect to
every variable xj , j = 1, n on A.

The function f is two times partially differentiable at a with respect to every

variable if all partial derivatives
∂fi
∂xj

are partially differentiable at a ∈ A with

respect to every variable xk.

Notation for the second order partial derivative of f :

∂

∂xk

(
∂fi
∂xj

)
(a) =

∂2fi
∂xk∂xj

(a)

.
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Higher order derivatives Second order derivatives

Second order Fréchet derivative

The function f is two times differentiable at the point a ∈ A if the partial

derivatives
∂fi
∂xj

are differentiable at a.

The second order Fréchet derivative of f at the point a is the function
d2
af : Rn × Rn → Rm given by the formula

d2
af(u)(v) =

m∑
i=1

 n∑
j=1

n∑
k=1

∂2fi
∂xj∂xk

(a)ujvk

 ei

where u, v ∈ Rn, ei = (0, ..., 0, 1, 0, ..., 0), i = 1, n.

The second order Fréchet derivative of f at a satisfies

lim
u→0

‖da+uf(v)− daf(v)− d2
af(u)(v)‖

‖u‖
= 0 , ∀v ∈ Rn.

EVA KASLIK Calculus - Lecture 10 3 / 22



Higher order derivatives Second order derivatives

Second order derivatives for two variable functions

Assume that f : R2 → R.

Second order partial derivatives:

∂2f

∂x2
= fxx = (fx)x =

∂

∂x

(
∂f

∂x

)
∂2f

∂x∂y
= fyx = (fy)x =

∂

∂x

(
∂f

∂y

)
∂2f

∂y∂x
= fxy = (fx)y =

∂

∂y

(
∂f

∂x

)
∂2f

∂y2
= fyy = (fy)y =

∂

∂y

(
∂f

∂y

)
Second order Fréchet derivative at a = (a1, a2) ∈ R2:

the function d2
af : R2 × R2 → R given by

d2
af(u)(v) = fxx(a1, a2)u1v1+fxy(a1, a2)u1v2+fyx(a1, a2)u2v1+fyy(a1, a2)u2v2

for any u = (u1, u2), v = (v1, v2) ∈ R2.
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Higher order derivatives Second order derivatives

Example
Consider the function f(x, y) = xexy.

The first order partial derivatives are:

fx = exy + xyexy and fy = x2exy.

The second order partial derivatives are:

fxx = (fx)x = 2yexy + xy2exy fxy = (fx)y = 2xexy + x2yexy

fyx = (fy)x = 2xexy + x2yexy fyy = (fy)y = x3exy

The Second order Fréchet derivative at the point a = (1, 0) is the function
d2

(1,0)f : R2 × R2 → R given by:

d2
(1,0)f(u)(v) = fxx(1, 0)u1v1 + fxy(1, 0)u1v2 + fyx(1, 0)u2v1 + fyy(1, 0)u2v2

= 2(u1v2 + u2v1) + u2v2

for any u = (u1, u2), v = (v1, v2) ∈ R2.
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Higher order derivatives Second order derivatives

Important theorems

Theorem (Mixed derivative theorem of Schwarz)

If the function f is twice differentiable at a, then

∂2fi
∂xj∂xk

(a) =
∂2fi

∂xk∂xj
(a) , ∀i = 1,m, j, k = 1, n.

Theorem (Criterion for second order differentiability)

If the second order partial derivatives
∂2fi

∂xj∂xk
exist in a neighborhood of a

and they are continuous at a, then f is two times differentiable at a.
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Higher order derivatives General case

Higher order partial derivatives

The function f : A ⊂ Rn → Rm is k-times partially differentiable at a ∈ A with
respect to every variable if

f is (k − 1)-times partially differentiable with respect to every variable on
an open neighborhood of a

every (k − 1)-th order partial derivative
∂k−1fi

∂xjk−1
· · · ∂xj1

is partially

differentiable with respect to every variable xjk at a.

The k-th order partial derivative of f at a is

∂kfi
∂xjk∂xjk−1

· · · ∂xj1
(a) =

∂

∂xjk

(
∂k−1fi

∂xjk−1
· · · ∂xj1

)
(a)
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Higher order derivatives General case

Higher order differentiability

The function f : A ⊂ Rn → Rm is k-times differentiable at a if the partial
derivatives of order (k − 1) are differentiable at a.

The Fréchet derivative of order k of f at a is the function
dkaf : Rn × · · · × Rn → Rm given by

dkaf(u1)(u2) · · · (uk) =

m∑
i=1

 n∑
j1=1

n∑
j2=1

· · ·
n∑

jk=1

∂kfi
∂xjk · · · ∂xj1

(a) · u1
j1u

2
j2 · · ·u

k
jk

 ei

The Fréchet derivative of order k of f at a satisfies:

lim
‖uk‖→0

‖dk−1

a+ukf(u
1)(u2) · · · (uk−1)− dk−1

a f(u1)(u2) · · · (uk−1)− dkaf(u
1)(u2) · · · (uk)‖

‖uk‖ = 0
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Higher order derivatives General case

Important results

Theorem (Mixed derivative theorem)

If the function is k-times differentiable at a, then the following relations hold:

∂kfi
∂xj1∂xj2 · · · ∂xjk

(a) =
∂kfi

∂xσ(j1)∂xσ(j2) · · · ∂xσ(jk)
(a)

Theorem (Criterion for k-times differentiability)

If the partial derivatives of k-th order of the function f exist in a neighborhood
of a and they are continuous at a, then f is k-times differentiable at a.
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Optimization Local minimum and maximum values

Minimum and maximum values

The point a ∈ A is a local minimum point of the function f : A ⊂ Rn → R1 if
there exists a neighborhood V ⊂ A of a such that f(a) ≤ f(x) for any x ∈ V .

The point a ∈ A is a global minimum point of the function f : A ⊂ Rn → R1 if
f(a) ≤ f(x) for any x ∈ A.

The point a ∈ A is a local maximum point of the function f : A ⊂ Rn → R1 if
there exists a neighborhood V ⊂ A of a such that f(a) ≥ f(x) for any x ∈ V .

The point a ∈ A is a global maximum point of the function f : A ⊂ Rn → R1 if
f(a) ≥ f(x) for any x ∈ A.
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Optimization Local minimum and maximum values

Minimum and maximum values
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Optimization Local minimum and maximum values

Conditions for local extreme values

Necessary condition for local extrema:
If the function f : A ⊂ Rn → R1 attains a local minimum or maximum value at
the point a ∈ A and all partial derivatives of f exist at a, then

∇f(a) = 0,

i.e. a is a critical point (stationary point) of f .

Sufficient condition for local extrema:
Assume that f : A ⊂ Rn → R1 has continuous second order partial
derivatives on A and a is a critical point of f .

i) If d2
af(h)(h) ≥ 0 for h ∈ Rn and det

(
∂2f

∂xi∂xj
(a)

)
6= 0, then a is a local

minimum point of f ;

ii) If d2
af(h)(h) ≤ 0 for h ∈ Rn and det

(
∂2f

∂xi∂xj
(a)

)
6= 0, then a is a local

maximum point of f .
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Optimization Local minimum and maximum values

Second derivative test for two variable functions

Assume that a = (a1, a2) ∈ A is a critical point of the function f : A ⊂ R2 → R.
Consider the Hessian matrix:

H(a1,a2)f =


∂2f

∂x2
(a1, a2)

∂2f

∂x∂y
(a1, a2)

∂2f

∂y∂x
(a1, a2)

∂2f

∂y2
(a1, a2)


Consider the principal minors of the Hessian matrix:

∆1 =
∂2f

∂x2
(a1, a2) and ∆2 = det

(
H(a1,a2)f

)
• if ∆1 > 0 and ∆2 > 0 then a = (a1, a2) is a local minimum point of f ;
• if ∆1 < 0 and ∆2 > 0 then a = (a1, a2) is a local maximum point of f ;
• if ∆2 < 0 then a = (a1, a2) is a saddle point of f ;
• if ∆2 = 0 then this test is inconclusive.
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Optimization Local minimum and maximum values

Examples

Example 1.

f(x, y) = x2 + y2 − 2x− 6y + 14

Partial derivatives:

fx = 2x− 2 fy = 2y − 6

=⇒ critical point: (1, 3).

Hessian Matrix at (1, 3):

H(1,3)f=

(
fxx(1, 3) fxy(1, 3)
fyx(1, 3) fyy(1, 3)

)
=

(
2 0
0 2

)
As ∆1 = 2 > 0 and ∆2 = 4 > 0 we deduce
that (1, 3) is a minimum point of the f .

Minimum value: f(1, 3) = 4
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Optimization Local minimum and maximum values

Examples

Example 2.

f(x, y) = y2 − x2

Partial derivatives:

fx = −2x fy = 2y

=⇒ critical point: (0, 0).

Hessian Matrix at (0, 0):

H(0,0)f=

(
fxx(0, 0) fxy(0, 0)
fyx(0, 0) fyy(0, 0)

)
=

(
−2 0
0 2

)
∆2 = −4 < 0 =⇒ (0, 0) is a saddle point.
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Optimization Local minimum and maximum values

Examples
Example 3.

f(x, y) = x4 + y4 − 4xy + 1

Partial derivatives:

fx = 4x3 − 4y fy = 4y3 − 4x

=⇒ critical points: (0, 0), (1, 1), (−1,−1).

Hessian Matrix:

H(x,y)f=

(
fxx fxy
fyx fyy

)
=

(
12x2 −4
−4 12y2

)
=⇒ ∆1 = 12x2 and ∆2 = 144x2y2 − 16

(0, 0) is a saddle point (∆2 = −16 < 0)
(1, 1) and (−1,−1) are local minimum points
(∆1 = 12 > 0 and ∆2 = 128 > 0)
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Optimization Constrained optimization

Lagrange multipliers and constrained optimization
Consider a function f : A ⊂ Rn → R1, where A is an open set and the set
Γ ⊂ A, defined by:

Γ = {x ∈ A : gi(x) = 0, i = 1, p} where gi : A→ R1 and p < n

The equations gi(x) = 0 are called constraints.

If the restriction of the function f to the set Γ, i.e. f |Γ , has an extreme point
a ∈ Γ, then this is called conditional extreme point.

Method of Lagrange Multipliers:

Assume that f and gi, i = 1, p are continuously differentiable near the
conditional extreme point a ∈ Γ and the gradient vectors ∇gi(a), i = 1, p are
linearly independent vectors of Rn.

Then there exist some constants λ1, λ2, ..., λp such that

∇f(a) =

p∑
i=1

λi∇gi(a)
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Optimization Constrained optimization

Special case: two variables and one constraint

If we want to maximize (minimize) the function f : A ⊂ R2 → R1 subject to the
constraint g(x, y) = 0, we first need to solve the system of three equations

g(x, y) = 0
∂f

∂x
(x, y) = λ

∂g

∂x
(x, y)

∂f

∂y
(x, y) = λ

∂g

∂y
(x, y)

with respect to the variables x, y, λ. The points (x, y) that we find are the only
possible locations of the extreme values of f subject to the constraint
g(x, y) = 0.
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Optimization Constrained optimization

Example

Find the extreme values of f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.
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Optimization Constrained optimization

Example
Find the extreme values of f(x, y) = x2 + 2y2 on the circle x2 + y2 = 1.

constraint: g(x, y) = x2 + y2 − 1 = 0.

We have to solve the system:
g(x, y) = 0

fx = λgx

fy = λgy

=⇒


x2 + y2 = 1

2x = λ · 2x
4y = λ · 2y

if x = 0, then y = ±1;
if λ = 1, then y = 0 and x = ±1.

=⇒ possible extreme points: (1, 0), (−1, 0), (0, 1) and (0,−1).

Evaluating f at each of these points gives the minimum and maximum value
of the function on the circle x2 + y2 = 1:

f(±1, 0) = 1︸︷︷︸
min

and f(0,±1) = 2︸︷︷︸
max

.
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Optimization Constrained optimization

Special case: three variables and two constraints

If we want to maximize (minimize) the function f : A ⊂ R3 → R1 subject to
constraints g(x, y, z) = 0 and h(x, y, z) = 0, we first need to solve the system
of five equations

g(x, y, z) = 0
h(x, y, z) = 0
∂f

∂x
(x, y, z) = λ1

∂g

∂x
(x, y, z) + λ2

∂h

∂x
(x, y, z)

∂f

∂y
(x, y, z) = λ1

∂g

∂y
(x, y, z) + λ2

∂h

∂y
(x, y, z)

∂f

∂z
(x, y, z) = λ1

∂g

∂z
(x, y, z) + λ2

∂h

∂z
(x, y, z)

with respect to the variables x, y, z, λ1, λ2. The points (x, y, z) that we find are
the only possible locations of the extreme values of f subject to the two
constraints.
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Optimization Constrained optimization

Special case: three variables and two constraints

∇f is in the plane determined by ∇g and ∇f :

Exercise. Find the maximum possible area of a right triangle of fixed
perimeter P .
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